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Electron-vibron –breather interaction
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We study the interaction of breathers in the context of a coupled electron-vibron lattice system. Starting with
single-site excitations, it is demonstrated that constellations exist for which the coexistence of electronic and
vibronic breathers is assured. The energy exchange between the vibrational and electronic subsystems and its
impact on the breather formation are discussed in detail. The coupled electron-vibron dynamics shows a
tendency toward energy redistribution into the vibronic degrees of freedom at the expense of the electronic
energy content. Attention is paid to the relaxation dynamics in the energy exchange and we discuss the
attainment of a steady regime for the coupled electron-vibron dynamics starting from a nonequilibrium state. It
is demonstrated that the presence of breathers has a strong impact on the relaxation dynamics. Breathers can
assist the relaxation process. With the help of a linear stability analysis, we show why the electronic subsystem
acts as an energy donor while the vibron system serves as the energy acceptor. To this end we investigate the
existence and stability of localized breathing eigenmodes capable of energy trapping. A frequency analysis
reveals that strong exchange also occurs due to a temporal transition from single-frequency breathers to those
oscillating with two frequencies and their temporal resonance interaction. Finally, the self-stabilized electron-
vibron system relaxes to a combined electron-vibron breather. On increasing the electron-vibron coupling
strength, only a vibronic phonobreather of large amplitude survives, whereas the electronic subsystem tends to
energy equipartition.

PACS number~s!: 41.20.Jb, 63.20.Pw, 63.20.Ry
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I. INTRODUCTION

Discrete breathers, that is, spatially localized and tim
oscillating solutions, of discrete nonlinear lattice syste
have attracted considerable interest over recent years@1–23#
~for reviews see@24,25#!. Recently, rigorous results hav
been obtained concerning the existence and stability
breathers in nonlinear lattices@18,26,27#. Such intrinsic lo-
calized modes have been observed experimentally in ele
networks@28#, in Josephson ladders@29#, in waveguide ar-
rays @30#, in a quasi-one-dimensional charge density wa
system@31#, and in crystalline arrays of charged linear cha
of PtCl @31#. Breathers have been proposed to understand
transient photodynamics of various low-dimensional el
tronic materials such as conjugated polymers@32#, and fem-
tosecond chemistry allows one to probe the photophysic
breatherlike excitations@33#. The proper excitation of intrin-
sic localized modes of anharmonic lattices via optical con
was discussed in@34#.

A great deal of the theoretical research has been focu
on the dynamical properties of breathers, such as their
bility and mobility @6,8,23,35,36# and numerical algorithms
for the excitation of breather solutions have been develo
@37#. Furthermore, the impact of the internal structure of d
crete breathers on their formation and stability properties
been investigated@12,13,38,39#. It has been demonstrate
that perturbations along internal breathing modes of the
crete breathers can also cause breather bifurcations,
from single-frequency breathers to those oscillating w
more than one frequency. Moreover, when certain inter
modes are properly excited the breather may become mo
@23,35#. Internal localized modes of breathers are also c
nected with scattering properties@40,41#.

However, most breather studies have concerned hom
PRE 621063-651X/2000/62~2!/2846~12!/$15.00
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neous nonlinear lattice systems having one degree of f
dom per lattice site~unit cell!. These nonlinear lattices con
sist of coupled oscillators of one specific type, and t
nonlinearity stems from the local anharmonicity of the o
site oscillators@Klein-Gordon ~KG! chains# and/or is con-
tained in the coupling terms@Fermi-Pasta-Ulam~FPU! mod-
els# @25#. Studies on several degrees of freedom per unit
have been performed in@42–44#. From the perspective o
localization, combinations of distinct lattices have been
dressed in@45–56#.

The present study is devoted to a combined lattice sys
possessing two different dynamical degrees of freedom
site. It describes the movement of an electron along a o
dimensional molecular chain modeled by a discrete nonlin
Schrödinger equation~DNLS! @57–65#. Moreover, the mo-
lecular constituents of the chain perform longitudinal vibr
tions described by a KG Hamiltonian. The electronic disp
sion, viz., the transfer matrix element, depends on
relative elongation of two adjacent lattice sites and in t
manner the coupling between the electronic and vibro
subsystems is established. Our model has to be distingui
from the Holstein model@45#, its generalizations@52,53# and
Davydov-type systems@46–55#. Basic to all these systems i
the coupling between electronic~excitonic! and vibronic de-
grees of freedom in a combined lattice system.

The work in @54# considered the interaction of a sing
electron with a discrete breather in a nonlinear FPU latti
The electron-lattice coupling arises through dependence
the electronic overlap integral in a one-dimensional el
tronic tight-binding description on the positions of the latti
sites. It is demonstrated that a bound electron-breather s
exists. The electron localization arises as the result of
capture by the vibrational breather during each half period
its oscillation without any response of the electron to t
2846 ©2000 The American Physical Society
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PRE 62 2847ELECTRON-VIBRON–BREATHER INTERACTION
breather. The study in@55# dealt with the self-consistent in
teraction of a single electron with longitudinal FPU latti
vibrations when the electron response to the lattice brea
is taken into account. Due to the presence of the electro
the lattice, a static lattice deformation creates a potential w
for the electron as well as the lattice vibrations causing
calization in the form of a coupled breatherlike state.

In @50,51# the electronic motion is studied in a sing
one-dimensional tight-binding band interacting with the
brations of a nonlinear lattice. Attention is focused on t
analysis of energy equilibration and electron motion start
in a highly nonequilibrium initial state. The nonlinear lattic
considered in@50,51# does not itself support discrete breat
ers. An explanation for the absence of~pure! lattice vibration
breathers is given by the fact that the existence criterion
pending on the potential parameters of@66# is not fulfilled
for the specific anharmonic lattice potential of@50,51# ~see
@54#!. Nevertheless, a bound electron-vibron-breather s
can exist due to the local alterations of the lattice ene
~deformation of the lattice! caused by the initially localized
electron creating a potential well not only for itself but al
for the lattice vibrations. These combined bound states a
experimentally when incident electrons collide with a th
film @67#. On its way through the film the electron exchang
energy with the excitations of the material@68–70#. These
processes also play an important role in nanoelectron
such as quantum wells and wires@71–73#. Furthermore, ini-
tially highly nonequilibrium situations also occur experime
tally when a localized electron~exciton! is produced by ini-
tial excitations, e.g., due to phototransfer. Again, t
electron can distribute its energy during its motion in t
material @74–76#. The advances in femtosecond spectr
copy make it possible to go to time and space scales
which the experimental study of transient phenomena of
teracting electronic and vibrational subsystems is possib

The studies in@50,51# considered the process of ener
redistribution between an initially localized electron and t
vibrations of an anharmonic lattice. The lattice atoms w
assumed to be in their rest positions, having zero velocit
However, in contrast to the previous studies, in the curr
approach the electronic as well as vibronic lattice degree
freedom are represented by anonlinear lattice system, each
system bearing its own breather solutions localizing el
tronic and vibrational energy, respectively. The coupling
tween the electronic and vibronic nonlinear systems then
lows us to study the highly nonlinear interaction of electr
and vibron breathers with respect to the time evolution of
energy redistribution in the combined lattice system. W
think that the results are of relevance for the relaxation
namics in real systems starting from a nonequilibrium ex
tation state and when nonlinear excitations are present in
interacting electronic as well as vibrational degrees of fr
dom.

The paper is organized as follows. In Sec. II we introdu
the coupled electron-vibron lattice system and examine
coupled dynamics. With this aim a breather solution
launched in both subsystems and their combined deve
ment is observed with emphasis on the dynamics of the
ergy exchange between the electronic degrees of free
and the vibronic ones. In detail, we discuss how the rel
ation process in the energy redistribution is influenced
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breather solutions. In Sec. III A we investigate the line
stability of the coupled breather dynamics. The time evo
tion of the eigenvalues of the Jacobian matrix correspond
to the system of linear equations in the tangent spac
monitored. In particular, we study the existence and stab
of internal localized modes and their impact on electro
and vibronic breather formation and stability, respective
Based on a Fourier analysis we demonstrate that, during
interlude of strong electron-vibron interaction, a transiti
from single-frequency breathers to two-frequency breath
takes place. Finally, in Sec. IV we give a summary.

II. COUPLED ELECTRON-VIBRON SYSTEM

We consider the transfer of an electron along a o
dimensional molecular chain where the electron movemen
influenced by longitudinal vibrations of the molecular co
stituents of the chain. The Hamiltonian is determined by

H5He1Hv , ~1!

with the electronic part given by a DNLS system deriv
from the Hamiltonian

He5E(
n51

N

ucnu21
g

2 (
n51

N

ucnu4

1 (
n51

N

Vn n21~cn* cn211cncn21* !, ~2!

wherecn represents the probability amplitude of the electr
occupying the molecular siten and E is the on-site energy
The parameterg regulates the strength of the nonlineari
that arises from the adiabatic elimination of local fast
tramolecular vibrations strongly coupled to the electron a
plitudes@46,57–65,77#. The derivation of this nonlinear elec
tron ~polaron! model is based on a time-scale separat
argument, and in particular on the fact that the intramole
lar vibrations are much faster than any intermolecular p
cess~intermolecular electron transfer or the relative vibr
tional motion of the lattice sites!. The third sum in Eq.~2!
represents the kinetic electronic lattice energy whereVn n21
is the transfer matrix element of the electronic coupling b
tween two molecular lattice sites. The transfer matrix e
ment depends on the intersite relative coordinateqn2qn21
in a linear fashion,

Vn n215V0@12a~qn2qn21!#, ~3!

with qn being the elongation of thenth molecular unit anda
the coupling parameter. In the limita50 the transfer ele-
ment reduces toV05const, and the Hamiltonian~2! yields
the standard DNLS system.

The nonlinear classical dynamics of the longitudinal
brations of the molecular sites is described by a Kle
Gordon lattice system with Hamiltonian
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Hv5
1

2 (
n51

N

pn
21

v0
2

2 (
n51

N

qn
21

b

4 (
n51

N

qn
4

1
1

2
c(

n51

N

~qn2qn21!2, ~4!

wherev0 is the frequency of small amplitude oscillations
the lattice sites,bqn

4 is the anharmonic part of the quart
on-site potential, andc is the coupling constant. It is throug
Eq. ~3! that the coupling between the electronic and inters
vibrational degrees of freedom is introduced. Since the la
are not constant, the transfer matrix elements are modul
by the motion of the molecular sites relative to each oth
When two adjacent units are further apart, the correspond
matrix element diminishes, causing a reduction in the e
tron transfer from one site to the other. Correspondingly,
two neighboring sites coming closer to each other the tra
fer matrix element increases, resulting in enhanced elec
transfer.~For a quantum treatment of the lattice vibratio
this would be a study of phonon-assisted hopping@78#.! We
do not take into account diagonal couplings of the vibratio
and electronic degrees of freedom, since their effect on
electron-vibron dynamics is assumed to be dominated by
diagonal nonlinear polaronicg term. Moreover, due to a
simple phase transformationc̃n(t)5cn(t)exp(2i Et), the E
dependence can be removed from the equations of moti

III. COUPLED ELECTRON-VIBRON DYNAMICS,
ENERGY REDISTRIBUTION, AND RELAXATION

DYNAMICS

In this section we study the dynamics of the coup
electron-vibron motion in the context of the system given
Eqs.~1!–~4!. The corresponding equations of motion are

i ċn5
]H

]cn*
5gucnu2cn1V0@12a~qn112qn!#cn11

1V0@12a~qn2qn21!#cn21 , ~5!

ṗn52
]H

]qn
52v0

2qn2bqn
31c~qn111qn2122qn!

1aV0~cn* cn211cncn21* !2aV0~cn11* cn1cncn11* !,

~6!

q̇n5
]H

]pn
5pn . ~7!

In the limit of a50 we obtain the pure DNLS lattice an
a KG chain, each supporting breather solutions, correspo
ing to electron and vibron localization, respectively. In Fig
we depict such breather solutions. We excited initially
single site electronically as well as vibrationally and all oth
sites were left in their rest positions. Such a local excitat
of the coupled electron-vibron lattice can be viewed as
local injection of excitation energy by an external proce
~e.g., a laser pulse leaving a hot spot!. During this process
both the electronic degrees of freedom and the vibronic
become locally excited. The initial amplitudes are chos
e
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ed
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such that the energy content of the two lattice chains d
not differ significantly. According to@26# we expect that
these single-site initial conditions will be continued
breather solutions if the coupling between the lattice osci
tors is sufficiently small.~The mathematical proof of the ex
istence of such a combined breather state will be prese
elsewhere@79#!. In fact, after an initial transient phase, bo
lattice dynamics have completely adopted stable breathe
lutions with exponentially decaying tails around the initial
excited site. Each of their strongly localized excitation p
terns involves mainly three sites. For the electronic breat
it is equivalent to a stationary solitonlike solution schema
cally expressed as

where the dots stand for vanishingly small amplitudes. T
mode sustaining symmetry breaking perturbations of its p
tern is centered at a single site@17,77#. On the KG lattice a
similar spatially symmetric breather is formed. The form
tion process and the stability of the breathers are linked
the excitation of their internal localized modes as tho
eigenvectors of the system linearized around the brea
which are localized too~see below in Sec. III A!. Without
the polaronic term, i.e., withg50 in Eq. ~5!, the electronic

FIG. 1. The amplitude profile of the DNLS and KG lattices f
vanishing electron-vibron couplinga50. The lattice length isN
5256 and periodic boundary conditions are imposed.~a! The
DNLS lattice with initially excited central site, i.e.,x(0)128

5y(0)12851/A2 andx(0)nÞ1285y(0)nÞ12850. Shown is the elec-
tronic occupation amplitudeucn(t)u25xn

2(t)1yn
2(t). Parameters:g

51 andV050.1. ~b! The KG lattice with initially excited central
site, i.e., q(0)12850.746, q(0)nÞ12850, and p(0)1<n<25650.
Shown is the vibronic coordinateqn(t). Parameters:v051/4, b
51, andc50.05.
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PRE 62 2849ELECTRON-VIBRON–BREATHER INTERACTION
probability amplitude would spread all over the lattice in t
course of time, leading to a delocalized electron.

The aim of the current paper is to investigate the brea
interaction in the context of a coupled nonlinear electro
vibron model with particular respect to the transient dyna
ics of the electron-vibron energy redistribution. In Fig. 2 w
depict the temporal evolution of the partial energies of
electronic and vibronic subsystems for different strengths
the interactiona. @The contribution of the interaction energ
Hint5a(n(qn2qn21)(cn* cn211cncn21* ) to the total energy
is less than 1%.# We always observe redistribution of th
electronic energy into the vibronic subsystem, regardles
the coupling strength. The coupling of the localized elect
to its surrounding lattice sites causes local lattice displa
ments. As a consequence, lattice modes differing in th
phases and velocities become excited and their superp
tions may extend with time over the KG lattice. This sprea
ing behavior is manifested also in a temporal increase of
lattice partition number, measuring the distribution of t
excitation energy among the lattice sites~see Fig. 6 below!.
Since the number of excited vibrational lattice modes
fairly high it seems unlikely that energy flows back into t
electronic degrees of freedom. Thus the process of en
redistribution from the electronic degrees of freedom into
vibronic ones is irreversible~see also@51#!.

For weak coupling (a&0.25) the energy exchange is n

FIG. 2. Temporal evolution of the partial energies for t
coupled DNLS and KG lattices for different electron-vibron co
pling strengthsa as indicated. Initial conditions and parameters
in Fig. 1.Ee(Ev) indicates the electronic~vibronic! energy.~a! The
electronic energyEe . ~b! The vibronic energyEv .
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too strong. After an initial transient phase of gradual ele
tronic ~vibronic! energy loss~gain!, no further vibrational
band states get excited, so that the energy redistribution
cess terminates and the curves reach plateaus of cons
nearly balanced, partial energies corresponding to a ste
equilibrium state. This striking feature shows us that afte
local deposition of excitation energy a transient of direc
energy transfer from the electronic to the vibronic subsyst
takes place until an equilibrium situation is attained. Note
small amplitude oscillations around the steady state ene
values. The physical meaning is that a small part of the
brational energy is fed back into the electronic state and
amount of energy is from then on transferred between
electronic and vibronic subsystems. On both the KG and
DNLS lattices a stable breather has been created. The fo
tion process of an electronic~vibronic! breather is very simi-
lar to that in the uncoupled case shown in Fig. 1. Regard
the electron breather, we notice an initial phase during wh
the breather amplitude diminishes while its localized shap
conserved. Eventually, after approximately 1000 time un
the amplitude loss terminates and a stable~stationary! elec-
tron breather remains with this reduced but virtually const
amplitude. Accordingly, the vibronic part accumulates t
energy released by the electronic subsystem. Let us re
that the initial single-site excitation of the vibrational lattic
causes a trapping potential for the nonlinear lattice vibrati
themselves. As a matter of fact, the spatiotemporal amplit
pattern of the KG lattice relaxes onto its own breather so
tions for a single-site initial excitation@see Fig. 1~b!#, main-
taining localization at the initial site, so that finally the di
persion of the vibrational excitation energy is inhibited.
addition, the lattice vibrations are influenced by a trapp
potential created by their coupling to the localized electr
During the short time transient process of gradual decre
of electronic energy, the electron itself remains localized
its initially excited site and experiences only a steady red
tion of its amplitude in accordance with the loss of its e
ergy.

In general, the larger the couplinga the less time it takes
to reach the equilibrium state, and the amount of electro
energy distributed into the vibrational lattice also gets larg
Moreover, fora*0.5 there is at the beginning a sudden i
crease~decrease! of the vibrational~electronic! energy as if
the lattice oscillators experience an instant kicklike distort
by the localized electron. Unlike the exchange dynamics
the low-coupling case (a&0.2), here there already appe
small amplitude oscillations during the transient redistrib
tion phase, pointing to early time energy backfeeding of t
portions of vibronic energy into the electronic system, a
vice versa. We further observe that after short times e
curve still reaches a plateau; however, the amplitudes of
oscillations around the corresponding steady energy va
decay more rapidly the larger the coupling. With regard
the amplitude patterns of the lattices, we note that for 2&a
&0.6 a stable electronic breather on the DNLS lattice h
been formed, whereas on the KG lattice we observe
breather solution at the initially excited site which is su
rounded by small amplitude phononic excitations. App
ently, the stronger the electron-vibron coupling the greate
the impact of the localized electron on the lattice vibratio
The large amount of electronic energy injected rapidly a
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2850 PRE 62DIRK HENNIG
locally into the KG lattice can exceed the trapping ability
the initial nonlinear KG lattice site, and thus the excess
ergy that cannot be pinned there has to be rejected such
phononic modes are excited, which disperse into exten
parts of the KG lattice. Afterwards, when the partial energ
evolve around the equilibrium plateaus, we observe an
phase motion of the electronic potential~kinetic! and the
vibronic kinetic ~potential! energies, whereas the potenti
and kinetic energies of each lattice oscillate out of phase
other words, the impact of the localized electron on the c
tral lattice oscillator results in a temporal increase of
vibronic potential energy due to larger elongations of
lattice oscillator, which in turn leads to an enlarged loc
electronic transfer matrix element~electronic kinetic energy!.
The increase in the electronic kinetic energy goes along w
an attempt to delocalize the electron and thus weakens
local influence of the electron-vibron interaction around
initially excited site. On the other hand, the strongly loc
ized electron does not leave the near vicinity of the init
site, and only a small portion of the electronic excitati
energy oscillates between the central site and its left
right adjacent sites, in accordance with the periodic cha
of the electronic kinetic and potential energy. At the mom
when the latter reaches its maximum value, that is, when
vanishing electronic kinetic energy the electron is complet
localized at the initially excited site, there is again a maxim
influence of the electronic occupation on the vibrational c
tral amplitude, and the energy exchange dynamics pa
through another cycle. The resulting small amplitude os
lations in the temporal evolution of the partial energies de
more rapidly the larger the electron vibron coupling.

The threshold behavior, i.e., the sudden quantita
change in the energy exchange dynamics around some
cal value of the coupling strength, is a genuine nonlin
effect. To gain further insight we illustrate in Fig. 3 the tem
poral development of the vibrational energy for a coupli
strengtha50.5 and different nonlinearity strengthsb of the
KG lattice. ~Because of energy conservation we can read
infer the corresponding evolution of the electronic ene
from these pictures.! For comparison with the results in Fig
2 we remark that the electron-vibron couplinga50.5 is
taken to be relatively large. Heavy directed energy migrat
occurs from the electronic to the vibronic subsystem

FIG. 3. Temporal evolution of the vibrational lattice energyEv ib

for different nonlinearity strengthsb and fixed electron-vibron cou
pling strengtha50.5.
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strong nonlinearityb51, as seen in Fig. 2~b!. For smallb
there is almost no variation of the vibronic~electronic! en-
ergy in the course of time. However, forb*0.5 this behavior
changes drastically. At short times the vibronic energy jum
up to a higher value~analogous to the instant kicking beha
ior appearing in Fig. 2 fora>0.5), increasing gradually af
terward, and eventually reaches a horizontal plateau. W
the DNLS lattice dynamics is characterized by stable el
tronic breathers regardless of the value ofb, the localization
properties of the vibronic KG lattice dynamics depe
heavily on the value of the nonlinearity parameter. For
cases~b50! and ~b50.2! in Fig. 3 there exists no strong
vibron localization and we observe rather a small amplitu
breathing localized state at the initially excited KG latti
site, from which small amplitude bandlike vibrations leak o
into the remaining sites of the KG lattice. Apparently,
needs a certain overcritical nonlinearity strengthb of the
quartic potential in order to suppress dispersion. Start
from the case ofb50, i.e., a harmonic vibron lattice, it be
comes clear that bound state creation requests at least a
ance between two competing mechanisms: the tendenc
disperse the vibronic energy~which is most efficient for the
harmonic potential ofb50) due to the coupling among th
vibron lattice oscillators, and, on the other hand, the trapp
of the vibrational state itself by intrinsic KG nonlinearit
~amplified with growing stiffnessb of the potential!, and
additionally vibron trapping because of its coupling to t
localized electronic amplitude. Conversely, only in the pr
ence of a stable KG breather does the coupling between
electron and the vibron maintain a strong local character
the lattice vibrations absorb electronic energy efficient
Otherwise, on dispersing vibronic energy away from the i
tially excited site, the electronic amplitude becomes nea
unaffected by the depleting vibrational amplitude. This
similar to the localization behavior in the opposite ca
when the vibrational subsystem bears the nonlinea
whereas the electronic subsystem is described by a lin
tight-binding lattice@50,51#. Strong enough electron-vibro
interaction, determining the nonlinearity strength in th
model, causes local deformations of the vibrational latti
which create a potential well for the electronic amplitude a
thus produce a polaronic state of the coupled electron-vib
lattice. Equivalently, in the present case the strong coup
of the localized electron to a weakly nonlinear KG latti
~small b) is able to generate a trapping potential for t
single-site vibrational excitation, leading to a long time l
calization of the vibrational energy at the initially excite
site. With enhanced nonlinearity strengthb, not only is pro-
nounced directed energy migration from the electronic to
vibronic subsystem initiated as reported above~see Fig. 2!,
but also the degree of vibron localization is amplified. Mor
over, the largerb the higher is the amount of electronic e
ergy absorbed by the vibron lattice and the less time it ta
to achieve the equilibrium regime. This result demonstra
the accelerating effect of higher-amplitude vibron breath
on the relaxation process in highly excited systems.

From the perspective of the influence of the electro
breather on the relaxation dynamics, similar results are
tained when we vary the polaronic nonlinearity strengthg
and keep all the other parameters fixed. For smallg&0.5 the
energy exchange behavior is equivalent to the cases of s
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PRE 62 2851ELECTRON-VIBRON–BREATHER INTERACTION
vibrational nonlinearity strengthb illustrated in Fig. 2~b!.
Beyond a critical value (g.0.9) the energy gain of the vi
bronic subsystem is again high and resembles the behavi
the strong coupling casesa>0.5 in Fig. 2. However, when
g*1.2 there is no longer an energy redistribution from t
electronic system into the vibronic degrees of freedom
the electronic and vibronic energy are conserved. The la
polaronic term is then responsible for such a strong local
tion of the electronic energy at the initial site that the int
action between the two subsystems is actually suppres
This prevention of the directed energy transfer from the e
tronic into the vibronic subsystem might have consequen
for the vibron localization ifb is not too large. In this case
the KG lattice may lack the amount of absorbed electro
energy needed to enhance its effective nonlinearity, tha
the amplitude of the initially excited site, which allows fo
profound vibron localization as in the cases previously d
cussed. Nevertheless, we observe a breathing localized
bron state at the initially excited lattice site, although it c
exists with a background of small amplitude modes in
remainder of the KG lattice.

A. Linear stability and local internal modes

To gain deeper insight into the process of directed ene
transfer from the electronic state into the vibronic one and
support the physical explanations given above by dynam
system arguments, we study the linear stability of
coupled breather dynamics. The two subsystems’ respo
to the mutual perturbations caused by their coupling m
lead to the excitation of localized internal modes. The la
play a fundamental role in the formation and stability
breathers@25,38,39#. Thus we are especially interested in t
existence and stability of localized internal modes. Impos
small perturbations

pn~ t !5pn
(0)~ t !1un~ t !, qn~ t !5qn

(0)~ t !1vn~ t !, ~8!

xn~ t !5xn
(0)~ t !1jn~ t !, yn~ t !5yn

(0)1hn~ t !, ~9!

substituting Eqs.~8! and ~9! into the system~5!–~7!, and
linearizing around (un5vn5jn5hn50) gives the linear
system of tangent equations

u̇n5cvn212@v0
213~qn

(0)!212c#vn1cvn11

12aV0@xn
(0)jn211~xn21

(0) 2xn11
(0) !jn2xn

(0)jn11#

12aV0@yn
(0)hn211~yn21

(0) 2yn11
(0) !hn2yn

(0)hn11#,

~10!

v̇n5un , ~11!

j̇n5aV0@yn21
(0) vn211~yn11

(0) 2yn21
(0) !vn2yn11

(0) vn11#

12gxn
(0)yn

(0)jn1V0@12a~qn
(0)2qn21

(0) !#hn21

1g@~xn
(0)!213~yn

(0)!2#hn

1V0@12a~qn11
(0) 2qn

(0)!#hn11 , ~12!
of
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ḣn52aV0@xn21
(0) vn211~xn11

(0) 2xn21
(0) !vn2xn11

(0) vn11#

2g@3~xn
(0)!21~yn

(0)!2#jn2V0@12a~qn
(0)2qn21

(0) !#jn21

2V0@12a~qn11
(0) 2qn

(0)!#jn1122gxn
(0)yn

(0)hn . ~13!

Introducing the perturbation vectorD5(u,v,j,h), we ex-
press the system~10!–~13! in matrix notation as

Ḋ5M D, ~14!

where the Jacobian matrixM5M „p(t),q(t),x(t),y(t)… is
determined via the right hand sides of the system~10!–~13!.
Linear stability of the solution„pn(t),qn(t),xn(t),yn(t)… re-
quires that the Jacobian matrixM has no eigenvalue with
positive real part, otherwise perturbations grow in time. T
matrix M is symplectic. Therefore its complex eigenvalu
occur in quadruples (lk ,lk

21 ,lk* ,lk*
21) with 1<k<N.

During the transient process it is suitable to discuss
stability by inspection of the temporal development of t
eigenvaluesln of the Jacobian matrix determining the tem
poral Lyapunov exponents. Before embarking on the coup
case, we briefly describe the features of the spectrum of
uncoupled case (a50) in the presence of individual stabl
electronic and vibronic breathers. Thel spectrum is shown
in Fig. 4 in the complex plane. We recognize that the pur
imaginary eigenvalues constitute two continuum bands c
responding to extended phonon modes. The freque
ranges of the linear bands are bounded by

22V0<ve<2V0 , ~15!

v0
2<vv

2<v0
214c, ~16!

whereve(vv) denotes the phonon frequency of the DNL
~KG! chain. The eigenvalues with the largest~smallest!
modulus of the imaginary part correspond to phonons w
wave vector 0 (p). For later reference we note that the upp
edge of the KG phonon band is at the level 0.512i . Further-
more, two pairs of isolated imaginary eigenvalu
(le

loc,1/le
loc) and (lv

loc ,1/lv
loc) are situated outside the band

of the phonon eigenvalues. The superscriptloc indicates that

FIG. 4. Spectrum of the eigenvalues of the Jacobian matrix
the uncoupled DNLS KG lattice in the complexl plane. Parameters
and initial conditions as in Fig. 1. The two pairs of isolated eige
values corresponding to local breathing modes are denoted
le,1/le for the DNLS lattice andlv,1/lv for the KG lattice.
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the corresponding eigenvectors of the Jacobian matrix re
sent localized breathing modes@25,38,39#. Due to the time
reversibility of the breather solutions the corresponding p
of eigenvectors (un

loc ,vn
loc) and (jn

loc ,hn
loc) are complex

conjugate, so that one is the image of the other through t
reversibility. In particular, for the KG lattice it holds tha
Im vn

loc5Reun
loc50, meaning that the momentum comp

nents are purely imaginary whereas the position compon
are real. For the DNLS lattice the stable eigenvectors sat
either Imhn

loc5Rejn
loc50 or Rehn

loc5Im jn
loc50. More-

over, the internal local modes resemble the spatial symm
of the ~uncoupled! electronic and vibronic breathers.

For the coupled case ofa50.1 we monitor the tempora
evolution of theln’s and report time snapshots of their m
mentary positions in the complex plane. As an orientation
our description we use the spectrum of the uncoupled c
shown in Fig. 4. Due to the reflection symmetry along t
real axis it suffices to consider only the upper half of t
complexl plane, and in what follows we describe the tem
poral movement of the eigenvalues with positive imagin
part.

We distinguish three time intervals.
(i) 0<t,300. The first snapshot is taken after a hund

time units. Most strikingly, the imaginary part of the vibron
isolated eigenvaluelv

loc has almost descended to thek50
edge of the phonon band. In general, we observe that ei
values may slightly depart from the imaginary axis into t
right or left half plane but their real parts are confined
values in the interval (20.0001,0.0001). Moreover, after
short duration, of the order of 50 time units, in one of t
half planes the eigenvalues cross the imaginary axis, rev
ing the sign of their real part. These oscillatory crossings
the imaginary axis take place only fort&1000. Therefore it
is justified to discard the tiny real parts because they ca
merely a negligible temporal amplitude change of the eig
functions. Afterward, fort.1000, the eigenvalues come
lie on the imaginary axis. Since Imlv

loc50.517 is just above
the upper edge of the phonon band, its eigenfunction is o
quasilocalized because the localization length is rather la
@80#. In Fig. 5~a! we show the real part of the position com
ponentvn

loc of the corresponding~normalized! eigenvector
exhibiting a density group centered around the lattice sitn
595. We remark that the imaginary parts of the positi
componentsvn

loc of the eigenvectors and the real parts
their momentum componentsun

loc are no longer zero but re
main small. Most importantly, the asymmetric spatial p
terns of the KG eigenvector shown in Fig. 5~a! break the
spatial symmetry of the single-site excitation. Unlike t
DNLS lattice, the KG lattice so far lacks the existence o
local breathing mode serving for strong localization of t
initial conditions. Therefore the initial single-site vibron
excitation caused by a quasilocalized mode tends to disp
immediately into neighboring sites. This is why the vibron
lattice participation numberĒv makes an early jump to rela
tively high values fort.0 ~see below!. In contrast, pertur-
bations of the DNLS breather by the stable localized eig
mode belonging to the isolated eigenvaluele

loc51.24i do
not destroy the localization of the electronic energy at
initially excited site because the single-site breather and
perturbational mode have the the same spatial symmetry
e-
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tern strongly localized around the central lattice site. In F
5~c! we draw the Rejn

loc component of the strongly localize
symmetric eigenmode of the DNLS chain to emphasize
difference from the quasilocalized eigenmode of the KG s
tem.

At a later time (t5250) the isolated electronic eigenvalu
le

loc has moved upward to the value 1.64i . The imaginary
part oflv

loc is still detained above the level of thek50 band

edge. Another vibronic eigenvaluel̃v
loc50.513i has left the

phonon band, creating a further quasilocalized mode of
KG lattice in addition to the mode shown in Fig. 5~a!. In Fig.
5~b! we show the pattern of the real part of the positio

FIG. 5. The real part of the position componentvn
loc of the

~normalized! eigenvector belonging to the isolated vibronic eige

valueslv
loc ~a! and l̃v

loc ~b!. In ~c! the real part ofjn
loc correspond-

ing to the isolated electronic eigenvaluele
loc is shown.
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PRE 62 2853ELECTRON-VIBRON–BREATHER INTERACTION
ṽn
loc . There exist two density groups. Compared to the po

tion pattern shown in Fig. 5~a! a further relatively large den
sity group of longer localization length has been created
ward the right end of the lattice. The superposition of the
two different quasilocalized modes on the KG lattice amp
fies the dispersive destruction of the single-site excitation

These features of the eigenmodes explain~mathemati-
cally! the affinity of the vibronic subsystem to distribute e
ergy in its lattice segments where the eigenmodes of F
5~a! and 5~b! have become excited. This temporary ener
spreading over the KG lattice is clearly reflected in the e
lution of the energetic lattice partition number, which we u
to quantify the degree of localization of the partial energi
The energetic lattice partition number is defined as

Ēe,v~ t !5S (
n51

N

Ee,v n
2

S (
n51

N

Ee,v nD 2D 21

, ~17!

where Ee,v n are the local electronic and vibronic energi
determined by

Ee n5
g

2
ucnu41V0~cn* cn211cncn21* !, ~18!

Ev n5
1

2
pn

21
1

2
v0

2qn
21

1

4
bqn

41
1

2
c~qn2qn21!2. ~19!

The partial electronic~vibronic! energy is completely con
fined at a single site ifĒe,v51 and is uniformly extended
over the lattice ifĒe,v is of the orderN. ThusĒe,v measures
how many sites are excited to contribute to the lattice ene

With regard to the perturbations of the DNLS breath
we note that the eigenvector corresponding tole

loc is now
time antisymmetric, i.e., Imhn

locÞ0 and Rejn
locÞ0. How-

ever, since the electronic breather and its excited local in
nal mode still obey the same spatial pattern, the latter is
symmetry breaking with respect to the breather. It is rat
that the breather amplitude is modified under radiative los
into the DNLS lattice while the localized shape rema
pinned at the originally excited lattice site.

(ii) 300<t&1000. In this time interval the picture
changes significantly. By the sudden steep slope of the
ergy curves in Fig. 2 we note that the exchange of electro
and vibronic energy becomes much more pronounced. A
instant of time (t.310) the isolated vibron eigenvaluel̃v

loc

has returned to the phonon band whereaslv
loc has been

raised to the value 1.28i . Now the KG lattice is equipped fo
the first time with a local breathing mode at the central s
analogous to the one in thea50 case. In this way the vi-
bronic energy starts to accumulate at the initially excited s
The electronic eigenvaluele

loc has moved down the imagi
nary axis to 1.61i .

From the next snapshot att5500 it becomes apparent th
the isolated vibronic eigenvaluelv

loc50.52i has almost re-
turned to the upper phonon band edge. As a consequence
local breathing mode ceases to exist and is replaced b
i-
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a

quasilocalized mode. Meanwhile, the electronic isolated
genvalue has been pushed further downward to a lo
imaginary value 1.53i .

As time goes by the mobile KG eigenvaluelv
loc experi-

ences further transitions, that is, it steadily climbs up
imaginary axis. During this process the local breathing K
mode is being rebuilt. Att5750 the eigenvalue has reache
the point 1.24i . On its way up the imaginary axis, Imlv

loc

passes the level of Imle
loc . The latter is continuing its down

ward motion and fort5750 has dropped down to 1.37i . We
stress that with rising~falling! imaginary part of the eigen
value the frequency of the corresponding eigenmode g
higher ~lower!.

During the period of strong exchange interaction betwe
the electronic and vibronic subsystems, there is a tempo
increase of the DNLS lattice partition number~see Fig. 6!
which is due to radiative losses of the electronic breat
amplitude into the DNLS lattice. This emission process c
be viewed as a self-stabilization in the sense that in orde
maintain its localized shape the electronic breather has
adapt to the reduction of the frequency of its excited inter
breathing mode. This is achieved such that the breather
minishes its amplitude and hence its~nonlinear! frequency.
To this end the breather has also to get rid of the exc
energy that will not be absorbed by the vibron system.
turn, the amount of vibron energy gain is governed by
~growing! excited internal breathing KG mode. Note th
neither the DNLS breather nor the KG breather can be m
mobile, for there exists no pinning mode in the form of
spatially antisymmetric local internal mode. But the spatia
symmetric local breathing mode for the stationary DNL
breather always exists.

(iii) t *1000. Finally, all eigenvalues have found the
destination on the imaginary axis and thel spectrum re-
sembles the structure of the uncoupled case~compare Fig. 4!,
i.e., there are phonon bands and two pairs of isolated pu
imaginary conjugate eigenvaluesle

loc and lv
loc assigned to

the internal local modes of the stable KG and DNLS brea
ers. However, compared to thea50 case, the isolated eigen
values have exchanged their positions on the imaginary a
that is,le

loc51.27i andlv
loc51.76i .

Finally, for t*1000, when the energy exchange proces
over, the DNLS-KG dynamics has approached a stability

FIG. 6. The lattice partition number defined in Eqs.~17!–~19!.
Parameters and initial conditions as in Fig. 2 fora50.1.
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2854 PRE 62DIRK HENNIG
gime and the electronic and vibronic breathers evolve w
out further interference. Apart from oscillations around
constant mean value, the nonvarying vibronic and electro
lattice partition numbers assure the strong localization of
partial energies at a few sites of each lattice as seen in Fi

B. Transition from single- to two-frequency breathers

It is illuminating to describe the different scenarios of t
electron-vibron breather interaction also in terms of
power spectrum of the main excitation amplitudes involv
Figure 7~a! depicts the power spectrum of the real part of t
central electronic amplitudex128 and the vibronic coordinate
q128, respectively, measured in the time interval 0<t<250.
~Note that only the low-frequency part without higher ha
monics is shown.! Like the power spectrum of the uncouple
case the present spectrum for the coupled case reveals
peaks at separate incommensurate frequencies where
lower ~higher! frequency peak corresponds to the vibron
~electronic! breather motion.

Later, for t*300, the pronounced breather interacti
process sets in. From spectral analysis performed in the
terval 300,t<550 for either electronic as vibronic ampl
tude, a second peak emerges between the electronic an
bronic peaks@see Fig. 7~b!#. Their mutual overlap points to
resonance interaction between the electronic and vibro
subsystems, viz., their breathers. Consequently, a trans
from weakly interacting single-frequency breathers
strongly interacting two-frequency breathers has taken pl
As time progresses the height of the left~right! vibronic
~electronic! peak of the power spectrum is gradually low
ered. Simultaneously, the right~left! vibronic ~electronic!
peak height is enhanced while the frequency positions m
in opposite directions, namely, the electronic peak shifts
lower and lower frequencies and vice versa for the vibro
peak. Eventually, when the breather interaction process
terminated, the power spectrum fort*1000 restores two iso
lated peaks, but the electronic and vibronic peaks have
exchanged their positions compared to the early time po
spectrum@see Fig. 7~c!#. This is due to the fact that th
electronic breather, after the interaction phase with the
bronic breather, has reduced amplitude and hence also lo
frequency. Correspondingly, the vibronic breather has gai
amplitude~energy! at the expense of the electronic breath
shifting its power spectrum peak to a higher frequency.

C. Formation of a vibronic phonobreather

We consider the case of stronger coupling between
electron and vibron systems by choosinga50.65. Again
single-site excitations are used. In Figs. 8~a! and 8~b! we
draw the spatiotemporal evolution of the DNLS and KG l
tices. The narrow excitation peak of the DNLS lattice so
splits into two low-amplitude itinerant breathers. Analysis
the linear stability shows that for the DNLS system an u
stable eigenmode with time antisymmetric part has been
cited, which causes breather splitting and the subsequent
bility of the remaining two fragments~see also@38#!. These
breathers are not exact solutions so that their nonunif
movement is restricted to a lattice segment of nearly 40 s

On the KG lattice a phonon background is initiated. O
top of it a long-lived breather with extended tail~phono-
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breather@25,52,37#! persists. From the plot of the tempor
evolution of the electronic and vibronic energies we dedu
that the energy redistribution is in favor of the vibronic sy
tem, as seen in Fig. 8~c!. The lattice partition number show
in Fig. 8~d! confirms that the vibronic energy remain

FIG. 7. The temporal development of the power spectrum of
time evolution of the central electronic amplitudex128 and the vi-
bronic coordinateq128, respectively; only the low-frequency pa
without higher harmonics is depicted.~a! The time interval 0<t
<250. Two isolated peaks at distinct frequencies. The left~right!
peak is attributed to a single-frequency KG~DNLS! breather.~b!
The time interval 300,t<550. The KG and DNLS power spectr
produce a second peak situated at a frequency between those o~a!.
Two-frequency breathers are being formed.~c! The time interval
1000<t<1500. The reappearance of two isolated peaks at dist
frequencies. The left~right! peak now belongs to the single
frequency DNLS~KG! breather.
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FIG. 8. The coupled DNLS-KG lattice dynamics with single-site excitations according tox(0)1285y(0)12851/A2, x(0)nÞ128

5y(0)nÞ12850, q(0)12851, q(0)nÞ12850, and p(0)1<n<25650. ~a! Spatiotemporal evolution of the electronic occupation num
ucn(t)u2 illustrating the immediate decay of the initial single-site excitation to two low-amplitude itinerant breathers.~b! Spatiotemporal
evolution of the vibronic coordinateqn(t). A phonobreather around the central site has been created.~c! Temporal evolution of the partia
energies. The electronic energyEe drops while the vibronic energyEv rises.~d! The lattice partition number for the DNLS and KG system
as indicated in the plot. In agreement with the results shown in~a!–~c! the vibronic energy remains localized whereas the electronic en
is spread over the DNLS lattice.
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strongly localized whereas the electronic energy is share
many DNLS lattice sites. The most important conseque
of this process physically is that the electron is no lon
localized at the initially excited site, unlike in the cases co
sidered in Sec. III. Due to the modulation of the electro
transfer matrix element by numerous extended phonon b
ground modes, electronic transfer into extended parts of
lattice is stimulated. As in Sec. III the vibronic breather
the KG lattice prevents a rapid relaxation.

IV. SUMMARY

We have considered the interaction of electron and vib
breathers in a coupled DNLS-KG lattice system. In the f
mation process of the breathers a single lattice site has
used electronically and vibrationally. We have always o
served temporal energy redistribution in favor of the vibro
degrees of freedom, regardless of the value of the elect
vibron coupling strength. When for weak electron-vibr
couplings the energy content of the KG and DNLS syst
eventually becomes balanced, a stable breather evolve
each lattice. Such a combined electron-vibron bound s
has strong influence on the relaxation process subseque
a local injection of excitation energy in real systems~e.g.,
solids, biomolecules!. Probing the short term relaxation dy
namics is of special interest for achieving a steady regim
by
e
r
-

k-
e

n
-
en
-

n-

on
te
t to

of

the coupled electron-vibron lattice system starting from
nonequilibrium state. At short times we observed that
stronger the electron-vibron coupling the more electronic
ergy is absorbed by the vibronic subsystem to be stored
vibron breather. During the exchange process the amplit
of the localized electronic state is gradually reduced, but
calization of the electron at the initially excited site is mai
tained. Afterward, when the energy migration is over, t
evolution of the electronic and vibrational energi
progresses with temporal oscillations decaying faster
larger is the amplitude of the vibron breather. This res
demonstrates that in coupled systems excited in nonequ
rium initial states higher-amplitude breathers may sign
cantly boost the relaxation process. The vibron breather
particular possess an energy absorbing capacity that as
the rapid attainment of an equilibrium regime.

We have discussed the existence and stability of locali
internal breathing modes derived from a system of lin
equations in tangent space. To this end we have consid
the time evolution of the corresponding Lyapunov expone
and the resulting stability properties of the associated eig
functions. First we considered the weak coupling case.
markably, the DNLS lattice always possesses a local bre
ing mode assisting permanent energy localization, wher
in the beginning the KG lattice has no such local intern
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mode. In the course of time a dynamical process of s
stabilization takes place, during which the KG lattice a
produces a stable local internal mode, supporting a brea
responsible for the vibron energy localization. Eventua
the lattice dynamics is characterized by two coexisting sta
breathers.

Interestingly, above a critical electron-vibron couplin
strength, energy localization on only the KG lattice is p
ferred, where a phonobreather is formed. The elect
.

th

s

ev

F

E

-

f-

er
,
le

-
n

breather splits up into two small amplitude itinerant brea
ers that are unable to prevent greater dispersion of the e
tronic energy.
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